Surface tensions in NaCl-water-air systems from MD simulations.
نویسندگان
چکیده
Surface tensions for liquid-vapor (lv), solid-liquid (sl), and solid-vapor (sv) interfaces are calculated from molecular dynamics simulations of the NaCl-water-air system. Three distinct calculation techniques based on thermodynamic properties are used to describe the multicomponent mixtures. Simulations of each bulk phase (including a liquid saturated solution) and various interfaces are carried out at both NPT and NVT conditions. The thermodynamic relation for energy difference between interface and bulk phases provides an upper bound to the surface tension, while the energy-integral and test area methods provide direct estimates. At 1 atm and 300 K, the best predictions for surface tensions are sigmasv (NaCl-air) of 114 mN m(-1), sigmasl (NaCl- soln) of 63 mN m(-1), sigmalv (soln-air) of 82 mN m(-1), and sigmalv (water-air) of 66 mN m(-1). The calculated surface tensions from simulations have uncertainties between 5 and 10%, which are higher than measurements for the liquid interfaces and lower than the measurement uncertainty for the solid interfaces. The calculated upper bounds for surface tensions of liquid interfaces compare well with experimental results but provide no improvement over existing measurements. However, the bounding values for solid interfaces lower uncertainty by as much as a factor of 10 as compared to the indirect experimental measurements currently available. The energy-integral and test area methods appear to underestimate the surface tension of water by 10%, which is consistent with previous studies using similar model potentials. The calculated upper bounds of surface tension show a weakly positive correlation with pressure in the 0.1-100 atm range for liquid-solid, liquid-vapor, and solid-vapor interfaces.
منابع مشابه
Effect of Surface Tension from MD Simulations on Size-Dependent Deliquescence of NaCl Nanoparticles
The deliquescence of sodium chloride is size dependent for particles smaller than 100 nm, with some discrepancies between measured and predicted deliquescence relative humidity as a function of size. Two sources of uncertainty in current models are the solid– liquid/solid–vapor surface tensions and the curvature dependence of surface tension. Molecular Dynamics simulations are used to calculate...
متن کاملInfluences of surfactant and nanoparticle assembly on effective interfacial tensions.
We have studied assembly at air-water and liquid-liquid interfaces with an emphasis on systems containing both surfactants and nanoparticles. Anionic surfactants, sodium dodecyl sulfate (SDS) and non-ionic surfactants, Triton X-100 and tetraethylene glycol alkyl ethers (C(8)E(4), C(12)E(4) and C(14)E(4)), effectively decrease the surface tension of air-water interfaces. The inclusion of negativ...
متن کاملSimulations of zwitterionic and anionic phospholipid monolayers.
Results of atomistic molecular dynamics simulations of dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol monolayers at the air/water interface are presented. Dipalmitoylphosphatidylcholine is zwitterionic and dipalmitoylphosphatidylglycerol is anionic at physiological pH. NaCl and CaCl2 water subphases are simulated. The simulations are carried out at different surface densitie...
متن کاملMolecular fragment dynamics study on the water-air interface behavior of non-ionic polyoxyethylene alkyl ether surfactants
Molecular fragment dynamics (MFD) is a mesoscopic simulation technique based on dissipative particle dynamics (DPD). MFD simulations of the self-aggregation of the polyoxyethylene alkyl ether surfactants C6E6, C10E6, C12E6 and C16E6 at the water-air surface lead to equilibrium nanoscale structures and computationally determined surface tensions which are in agreement with experimental data for ...
متن کاملLarge Scale Molecular Dynamics Simulation of Aqueous NaCl Solutions
The understanding of aqueous solution properties is recognized as being important in many areas of physical chemistry and molecular biophysics. Computer simulation has become an important tool in understanding the structure and dynamics of aqueous electrolyte solutions at the atomic or molecular level. Many works of molecular dynamics (MD) simulations have been carried out to investigate hydrat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 111 41 شماره
صفحات -
تاریخ انتشار 2007